

Rhapsody
Advanced

Training
 Frameworks

Index

Why do we need a framework?

Types of Frameworks

IBM® Rational®
Rhapsody®

IBM Rational Rhapsody is a UML Tool. It is a UML Editor and a UML
Code generator. Code can be generated in several languages,

C, C++, Java and ADA.
For C and C++ it is not possible to generate code from all UML

constructs. For instance in UML it is possible to set a Class to Active.
This means that the objects of this class will run in their own thread.

Since neither C nor C++ has built-in statements for starting a thread
(or sending messages or setting timers) it is not possible to directly

generate code for that.
The solution is to implement the required functionality in a library,
most of the functionality is RTOS related so the Framework could

include a COTS RTOS

Why a Framework?
Well first of all: You don’t need a framework if you don’t want one!
You can generate code from UML diagrams and then fill the functions with your own code, and call state-
charts and or activity diagram code from your own routines. But it is far from convenient to do so. Rhapsody
will do a lot of work for you in the framework. Also you can be sure that you use the UML in a correct way if
you generate “production code”.
The framework will implement the functionality that the language of the generated code does not offer directly.
The ‘C’ language for instance does not have statements for starting a timer, sending and receiving messages and
starting a thread.
An RTOS does have that functionality, a Rhapsody framework will use that to implement this functionality.

What types of Framework are there?
One of the parameters that determines what framework you must/can use is the used language. You can use ‘C’
or ‘C++’ which both will use different frameworks. Java and C# use almost no framework, they use the Java VM
or .net to implement the functionality that the UML needs.
Another difference is the size/speed of the framework. You can imagine that generating code on a multi
gigabyte RAM Core-i7 is something different then generating on a 32k ROM 8-bit embedded CPU.

There are many Frameworks available with different features.

RXF, Realtime eXecution Framework
This is the Willert Software Tools Framework, especially created for realtime embedded targets. Has a small
footprint and uses very little RAM. It is very configurable so that it can be precisely tailored for the smallest of
targets. It is highly integrated with the target environment so that adapting to a new environment can take
longer. Is available in C and C++. This framework uses a normal RTOS to implement most functions. For very
limited target environments there is a built-in single-threaded RTOS (OO-RTX) that decreases the size and
speed dramatically. Supports Model level debugging with the UML target debugger.

RXF-Cert
The certifiable version of the RXF. All needed documentation for a certification against IEC61508 SIL 3 are
delivered. Some functionality is removed for safety purposes.

OXF, Object eXecution Framework
This is the IBM standard. Is not very large although larger then the RXF. is very easily adaptable to a new
environment due to the OSAL that includes all functions that require adaptation. Is available for all Rhapsody
languages C, C++, C#, Java, ADA. Many functions that could be implemented by an RTOS are implemented in
the framework itself to save adaptation. This makes the OXF larger than e.g. the RXF. The OXF is not very
deterministic since interrupts are disabled quite often and for a non-deterministic duration. Supports Animation
based on Code instrumentation and TCP/IP for communication.

MXF, Automotive Framework
Also delivered from IBM, connects to an AUTOSAR, RTE (OSEK) also called MicroC Framework. Must be
adapted to the users environment. Available in C.
The Extended C Framework is currently available only when the Automotive C profile is selected during
installation. This framework (which will eventually replace the IDF and SF) is designed primarily for automotive
applications where the following is required:
No dynamic memory allocation

TraM - Trng - Modeling - Rhapsody Advanced - Frameworks.pages Seite von 2 8

Compile-time initialization
Compact and Configurable
MISRA-98 Compliance
OSEK integration or No-OS with a simple scheduler
Time Triggered Systems

SMXF, Safety Framework
Also from IBM, includes Requirements and tests that are required for a certification. This is actually a Rhapsody
model, the framework code is also generated from Rhapsody. Available in C and C++

DOX, Distributed Framework
An IBM Framework dedicated for RTOSes with protected memory. Supports functionality that can use shared
memory to send events between objects in different memory spaces.
The framework allows events to be sent across address spaces.
To do so, the following properties will need setting:
C_CG::Configuration::MultipleAddressSpaces
C_CG::Class::PublishedName
C_CG::Class::PublishInstance
For each event, it will be necessary to provide a
serialize and unserialize function:
C_CG::Event::SerializationFunction
C_CG::Event::UnserializationFunction
A macro RiCGENREMOTE allows events to be sent to a remote address space ex:

IDF, Interrupt Drive Framework
The IDF was developed by an I-Logix Application Engineer, Marc Richardson. It lacks the use of active classes,
therefor it is very small. it was (before Rhapsody 7.6) delivered as a Rhapsody model and the code was
generated from that. It is a very good Framework for understanding how framework actually work.
By using the Interrupt Driven Framework (IDF), it is possible to run Rhapsody in C without the need for an
Operating System
The IDF can replace the OXF and RTOS
It can be used without malloc \ free
It generates smaller code. For example a simple stopwatch example takes
20K on an ARM7 (framework + libraries + generated code)
It requires just a periodic interrupt to be setup (so that timeouts can be
used in State-charts)

TraM - Trng - Modeling - Rhapsody Advanced - Frameworks.pages Seite von 3 8

CPU

Ex
te

r
na

l

IDF

Rhapsody
Generated Code

Out of the box, there are two IDF models. Idf.rpy is the generic framework and
then there will be specific models for each “Adapter” targeting a specific particular
compiler and cpu
The model idf.rpy is the “generic” framework that contains the principal
framework classes such as RiCReactive
Everything in this model is independent of the actual compiler and cpu used.
Everything that depends on the cpu and compiler is included in a separate
“adapter” model

SF, Synchronous Framework
A very tiny Framework that can only use triggered operations, no time-outs and
events.
The standard Rhapsody frameworks (OXF and IDF) both allow asynchronous
and synchronous communication.
If only synchronous communication is desired so that the behavior is deterministic,
then triggered operations can be used instead of events.
In this case, the majority of the framework is redundant.
The Synchronous Framework is just the bare minimum framework necessary to
allow the use of triggered operations.
The Synchronous Framework does not require an OS and as such, active classes
are not supported.
Timeouts and events are not supported.
Has a smaller footprint than the IDF

NF, No Framework
Not a real framework, of course but a possibility.
If the framework is not required, then you can simply set the
stereotype «NoFramework» to the configuration.
Of course without the framework, there will be no code
generation for active classes, ports, state charts, relations with
unbounded multiplicity, …

TraM - Trng - Modeling - Rhapsody Advanced - Frameworks.pages Seite von 4 8

What must be adapted?
First the framework itself. Depending on the type of framework there are functions that have dependencies
with the hardware and the development environment. They must be adapted.
Then there is the build environment. There are frameworks that come as a Rhapsody model, the must be
adapted in Rhapsody. Most frameworks use the “build in Rhapsody” way to build applications. Only RXF and
RXF-Cert use a deployer to integrate the generated sources in an IDE project and build from there.

TraM - Trng - Modeling - Rhapsody Advanced - Frameworks.pages Seite von 5 8

These are the principle classes that need
adaptation.

The interface stays the same, the implementation is different. Creating an adapter for a new environment is not
that difficult although the documentation is not very thorough. Looking at the delivered example adapters will
help you a lot. The advantage of using the OSAL is that you can use RTOS functions in your code without
caring about the underlying RTOS.
Create using
me->itsMutex = RiCOSMutex_create();
Locking:
RiCOSMutex_lock(me->itsMutex);
Freeing:
RiCOSMutex_free(me->itsMutex);

How does it work
These are the principal classes in the Event Driven Framework:
 RiCTask WST_TSK (Task)
 RiCReactive WST_FSM (Finite State Machine)
 RiCEvent WST_EVT (Event)

WST_MSQ (Message Queue)
 RiCMonitor WST_MTX (Mutex)

WST_TMR (Timer)
WST_TMM (Timer Manager)

 RiCMemory WST_MEM (Memory Manager)

TraM - Trng - Modeling - Rhapsody Advanced - Frameworks.pages Seite von 6 8

RiCTask (WST_TSK)
This class contains the base function for the
framework. Every active object has an
instance of this function (hence the RiCTask
* me argument)
It waits for an event and process the event
by calling the generated function from the
receiving object
(rootstate_dispatchevent())

RiCReactive (WST_FSM)
A reactive class is one that reacts to events / timeouts.
Each class that has a State-chart, contains an instance of RiCReactive. This is a class that knows how to handle
timeouts RiCTimeout and events RiCEvent.
RiCReactive has two main operations
The operation gen() allows events to be sent to the object, it calls an operation on its thread to queue the
event onto the thread’s event queue.
When the event / timeout is taken off the event queue, the takeEvent() operation is called to handle the
event / timeout.

RiCEvent (WST_EVT)

TraM - Trng - Modeling - Rhapsody Advanced - Frameworks.pages Seite von 7 8

RiCMonitor (WST_MTX)
Rhapsody provides a class called RiCMonitor
This can be used to automatically protect operations
which need guarding with a mutex.
This is done by simply setting the property concurrency
to guarded for the operation

dfwcfw

These are the basic Framework Functions.
In other chapters we will explain the other functions like Container Classes.

TraM - Trng - Modeling - Rhapsody Advanced - Frameworks.pages Seite von 8 8

	Rhapsody Advanced Training
	Index
	IBM® Rational® Rhapsody®
	Why a Framework?
	What types of Framework are there?
	RXF, Realtime eXecution Framework
	RXF-Cert
	OXF, Object eXecution Framework
	MXF, Automotive Framework
	SMXF, Safety Framework
	DOX, Distributed Framework
	IDF, Interrupt Drive Framework
	SF, Synchronous Framework
	NF, No Framework
	What must be adapted?
	How does it work
	RiCTask (WST_TSK)
	RiCReactive (WST_FSM)
	RiCEvent (WST_EVT)
	RiCMonitor (WST_MTX)

