
Architecture Design using UML
and Rhapsody

Architecture Design aims at a large number of viewpoints of a system and the 
structural setup with regard to these viewpoints. 

Traditional Architecture Design is primarily seen as the static partitioning of the
system in logical components. But that is only one field.

Other fields are the presentation and structuring of different versions  
(historical development) and variants and their differences to one another or even

miscellaneous operation modes..
Finally there is the perspective on the dynamic behavior, also know as 

runtime architecture.
All these fields can be addressed with UML and the respective diagrams.  

During this part of the training we will focus mainly on static and 
runtime architecture.

Especially the runtime architecture has effects on the type of modeling in UML and
the therefor meaningful diagrams to be used.

Architecture Design  
IBM® Rational® Rhapsody® Advanced Training

Index:

Static and dynamic 
architecture design.

Runtime Architecture  
Design Pattern.

Decision in principle:  
Time-driven or  
event-driven.

State machines and events.

State machines and signals.

Background information
regarding modeling based
on state machines.

Background information
regarding modeling based
on activity diagrams and
flow charts with Rhapsody.
Advantages &  
disadvantages.

Seite - -2

Architecture Design Basics
Static and dynamic architecture design?
The so-called static architecture design is all about dividing the system
into logical units. In UML this is done, inter alia, in form of different
classes and objects.
The logical processes are modeled or programmed within these
classes (objects) i.e. in form of state machines.
The question that remains is: how does the behavior of different
classes affect each other when executed?
Dividing the computational power into specific dynamic shares of the
classes is the dynamic architecture design or runtime architecture
design.

Runtime Architecture Design Pattern
The main() Loop is one of the simplest methods to assign dynamic
shares to the cpu. In this case the behavior of a class is executed by
the cpu on after the other.
The disadvantage is that the periodicity is the same for all and from
the point of view of fast reactions relatively slow. Sometimes it is
desirable and necessary that single reactions are executed in less time
than the periodicity of the the main() Loop allows. These would then
be executed separately and simultaneously to the main() Loop, ie.
ISR‘s (Interrupt Service Routines).
These can interrupt the dynamic execution of code in the main()
Loop (Preemption).
From the viewpoint of time there are a several more possibilities to
assign the execution of single dynamic shares from the static architec-
ture to the computational power of the cpu. In other words: to allo-
cate the computational power of the cpu to the respective dynamic
shares of the architecture.
Hereby there are two fundamental viewpoints. The allocation is either
done time- or event-oriented.

Decision in principle: Time or event
The main allocation of computational power is time-oriented (main()
Loop, time-slicing ...). The cpu time is thereby divided into cycles. A
cycle is allocated to every single Unit to be executed. The cycles can
be of different thus response times that vary can be displayed.
The reuse of software components in such a system is difficult, as
dynamic architecture must be ensured next to the static allocation of
a system.
The alternative is an event-oriented dynamic allocation of compo-
nents to be executed to the cpu.
The advantage of these systems is a more simple reuse, as the run-
time architecture dynamically adapts to the occurrence of events. The
disadvantage is a more dynamic behavior with poor deterministic
behavior. (Predictability of temporal behavior.).
In UML it is important to design the modeling of runtime architecture
in a way that corresponds to an event-oriented and time-oriented
manner.

Why architecture design?
REDUCTION OF COMPLEXITY  
(DIVIDE & CONQUER)

RESOLVING DEPENDENCIES  
(TO THE HARDWARE, COMPONENTS
AMONG THEMSELVES...)

IMPROVEMENT OF QUALITY  
ATTRIBUTES IN GENERAL  
SOFTWARE  
(COMPREHENSIBILITY, CHANGEABILITY  
 REUSABILITY, ROBUSTNESS)

Events and signals??
As the stimulant of our system and also as
data flow within the system it is important
regarding architecture to distinguish event
oriented data flow from time-continuous
(so-called signals) data flow.

The nature of events and signals differ signif-
icantly

Events
Must be classified as discrete from a tempo-
ral point of view. Thus, events are valid at a
particular time and they represent this time,
even though their lifetime may exist beyond.

Time sequences must be displayed with the
appropriate number of events. Gaps in the
range of values over time cannot be ruled
out (Sampling theorem). Events may very
well be used in event-oriented architecture,
they also harmonize very well with bus sys-
tems for transmitting data.

Signals
From a temporal point of view signals are
called continuously adjacent values. Easy
comparable to a cable connected to a port
to which an analogue signal is applied i.e.
voltage. The signal represents this moment
and is exactly valid in that moment. Signals
can be used very well with time-oriented
architecture. They can be retrieved at any
moment in time und provide a valid value.

Seite - -3

State machines and events.
The most used and common approach to the modeling of behavior in embedded
systems is based in the use of UML state machines.
Now one has to know that the state machine assumes an event-driven System
(by Harel).
In Figure No. 1shows a typical behavior or a part off MMI in the form of bright-
ness and volume control.
The transitions are implemented as events. The system has three buttons, one to
switch from brightness to volume control and vice versa and one for increase and
one reduction of brightness or volume.
When a button is pressed, then an event is generated and stored in an event
queue.
Behind the scenes there is a scheduler running. The scheduler fetches on event
after the other from the queue and activates the respective state machine that is
waiting for precisely this event. The state machine executes the corresponding
transition and performs the specified action in this state and passes control back
to the scheduler. Similarly, all events are processed precisely in the same order
they occur.
An important feature of this architecture: Temporal disruptions related to the
state machine will not affect the logical behavior. This is illustrated much better by
giving an example.
Lets suppose the system is in brightness state and we want to increase brightness.
The event mode would be generated first
and the minus event afterwards.
Even when the two buttons are pushed one
after the other in a very short time and the
system was busy at that very moment with
the execution of another state machine, the
events would be processed in the exact or-
der as soon as computing time is allocated to
our state machine.

A t t e n t i o n :
Timedriven runtime architec-
ture with signals in the
dataflow are not modelled
very well on the basis of state
machines.

Activity diagramms are much
better suited for this purpose
as orders can be precisely
defined within these dia-
gramms based on the history
of signal changes.

Ineff icient processing is the
disadvantage. Activity dia-
gramms are processed each
time, state machines ony
switch to the new state .

Figure No.1

Seite - -4

State machines and signals
Lets assume we do not have buttons but we have switches. The na-
ture of input changes from events to signals
Accordingly, we could model our state machine based on variables,
which contents represents the position of the switch as shown in
Figure No. 2.
Considering the behavior over time we encounter one problem.
State machines by Harel, do not know an explicit indication of the
order of transitions. Usually the order of events is specified in the
event queue.
In this case, there is no queue. When relevant signals change during a
period of active processing of the state machine to the next, it can
lead to undefined states of decision.
If for example the operation mode is switched and the plus signal is
queuing then the operating mode should be changed first and then
the reaction on the plus signal should follow.
This order cannot be specified in state machines.
In practice, more complex situations arise in which orders are to be
considered in logical decisions, even across multiple states.
Modeling on the basis of state machines is not well suited for
timedriven signal-oriented systems. Here it is better to model on the
basis of activity diagrams.

A t t e n -
t i o n :
Rhapsody code generation
from activity diagramms is
very very similar to state
machine.

Sometimes it makes more
sense to use f lowcharts.

However, these should be
integrated into classes in a
different way.

Figure No. 2

Seite - -5

A t t e n t i o n :
There are three design patterns for
runtime architecture and dataflow.
When it comes to combination
problems are inevitable . The same
applies to certain combinations of
modeling methods and the use of
diagramms and architectural pat-
terns.

Here are some combinations which
DO NOT harmonize with each oth-
er.

Preemptive scheduling and syn -
chronous data f low. (i .e . global vari-
ables or signals).

Timedriven runtime designs with
asynchronous f low of data (Events,
News).

Timedriven runtime designs and
modeling in state machines.

Event driven runtime designs and
modeling in sequence diagramms.

Background information regarding modeling
based on state machines
Let‘s take another look at the state machine shown in figure No.
3. Viewing the diagram superficially one can say that all informa-
tion that is necessary for execution of logic over time is included.
But that is not quite true. The need for a queue running in the
background which stores the precise order of events, is often
overlooked.
The execution over time becomes distinct only with the informa-
tion regarding the order of events (It must be assumed that the
state machine does not possess the sole computing time and
more than one change has occurred within one cycle.
Example: The system is in the state brightness, and the user wants
to increase the volume, then the order of events is: 1. Mode 2.
plus. If the order is changed, brightness will increase. When the
buttons are pressed quickly in succession and the state machine
is not active in between, the information regarding the order, will
be required.
This information is missing in time-driven runtime designs based
on signals. Therefore these have to be modeled in the state ma-
chine, additionally. The result is that each state has to be checked
for current validity before a state change can be implemented
within. Ultimately this leads to a flow chart. Modeling on the basis
of notation of state machines leads to incomprehensible and
unnecessarily complex state machines.

Background information regarding modeling
based on activity diagrams and flow charts
with Rhapsody
In Rhapsody code is generated from activity diagrams which are
similar to state machines.
Rhapsody offers modeling on the basis of flowcharts. Code
which is generated from flowcharts corresponds precisely to the
requirements we need at this point and thus forms the desired
alternative to state machines.

Seite - -6

while (1)
{

if (Signal_1)
do();

else
don‘t();

if (Signal_2)
do();

else
don‘t();

if (Signal_3)
do();

else
don‘t()

}

CPU  
TIME-ORIENTED WITH

CLOCK SPEED ENVIRONMENT
EVENT-ORIENTED WITH A
VARIETY OF FREQUENCIES

Continuously adjacent
signals

The condition of the environment
is sampled with every pass. The
result is slow response times.

tim
e-co

ntinuous si
gnal

called cyclically

Pre-cons on modeling with state machines based on
events?
The advantage of state machines is very fast reaction to changes within the system, due to the cur-
rent state which is known and that only one transition has to take place. A change of state is per-
formed directly after occurrence. Thus the system is executed in small steps which from a temporal
point of view leads to more efficiency as with time-driven systems.

A disadvantage is less robustness to stimuli. When the system generates false events due to electro-
magnetic smog, the system responds to every event which can lead to an overload. A prerequisite
for a robust system based on events is that it is not overloaded with meaningless events.

A time driven system does not react to state changes, but always in the same time intervals, regard-
less of stimuli. This is also the disadvantage. The system is subject to the sampling theorem. If stimuli
with a higher frequency appear, the event driven system reacts correctly und adjusts itself to that
frequency automatically, whereas the time driven system remains rigid and becomes inaccurate. Even
changes may disappear.

Figure No. 3

Seite - -7

CPU  
TIME-ORIENTED WITH
CLOCK FREQUENCY

EVENTS
THE SYSTEM KEEPS TRACK OF

THE STATES OF THE 
ENVIRONMENT, INHERENTLY,

AND CAN RESPOND TO A
CHANGE (AN EVENT) IMMEDI-

ATELY.

switch (rootState_active) {
 case state_0:
 {
 if(id == ev1_Default_id)
 {
 rootState_active = state_1;
 do();
 }
 }
 break;
 case state_1:
 {
 if(id == ev2_Default_id)
 {
 rootState_active = state_2;
 do();
 }
 }
 break;
 case state_2:
 {
 if(id == ev3_Default_id)
 {
 rootState_active = state_0;
 do();
 }
 }
 break;
}

Δ t

Δ t

called by event

ENVIRONMENT
EVENT-ORIENTED WITH A
VARIETY OF FREQUENCIES

Seite - -8

Author:
ANDREAS WILLERT

Editor:
WILLERT SOFTWARE TOOLS GMBH
Hannoversche Straße 21
DE - 31675 Bückeburg
Phone: +49 5722 9678 - 60
info@willert.de
www.willert.de

Product:

IBM® RATIONAL® RHAPSODY®
START-UP TRAINING

IBM® is a registered trademark of International Business Machines Corporation
Rational® is a registered trademark owned by IBM
DOORS® is registered trademark owned by IBM
Rhapsody® is a registered trademark owned by IBM
MS Word® is a registered trademark of Microsoft Corporation

