
User-defined
Data Types in

Rhapsody
Techletter Nr 5

Content

Rhapsody’s own types

Create your own types

Integrate your types in Rhapsody

Ditch the standard types

What about:
- structs?
- unions?
- bitfields?
- pointers?
- enums?
- volatile?
- const?

What about Animation?

Why ?
Using your own datatypes is a requirement that most users will have
sooner or later. Rhapsody’s standard datatypes are the types that are

defined in the underlying language.
Multiple sources, among them MISRA,tell us to use datatypes that are

interchangeable between different hardware platforms.
Also the definition of user defined types forces the compiler to check for

failures in the usage of variables and functions
This Techletter explains what options there are to define your own data

types in Rhapsody and how to use them efficiently in your modeling.
It explains how to define properties so you can select your own types, and

what properties to use to get the right code generated.
‘C’ and also ‘C++’ have various types and type modifiers/specifiers, this

Techletter explains how to use them in a Rhapsody model.

Rhapsody’s own types
Rhapsody comes with type definitions “Out-Of-The-Box”. They are the standard types that are defined in the
Code generation Language.
The picture on the far right shows the
types for Rhapsody in ‘C’.
These are all standard ‘C’ types except
for RiCBoolean and RiCString. Since ‘C’
does not know a boolean type (like
‘C++’ does) it is defined in Rhapsody
to allow use of it in the model. Also
defines are RICTRUE and RICFALSE.
RiCString is a ‘C’-class that handles
strings.
The Types in the example on the
immediate right are language
independent types used for e.g. SysML.
These can be useful because the
underlying Framework should take
care of a correct implementation but
for embedded environments, other types are needed.

Create your own types
How to create your own types? That is actually quite easy. Rhapsody
knows “Type” as a base element. So a right klick on a package, Class
or Object give you the possibility to add a type. Types in Classes and/
or Objects are local, they contain the name of the Class/Object and
are generated in the class.c file. (unless they are private off course,
then they are named without Classname and in the class.h file)
Defining types in a package makes most sense, they are generated in
the package file and they are generated with the correct name.
Best is to use a separate package for your user-defined types. Like
in this example we use “TypesPkg” in this package we define all
types we need. We just used four in the example but it should
make clear how the system works.
The Type in Rhapsody allows a lot of different inputs, you can
create enums, structs, unions and typedefs, as shown here.
The U16 (Unsigned 16 bit) Type is defined as an unsigned short
which, on this system, is an unsigned 16bit type.

What about animation?
Rhapsody developer edition has a feature called “Animation”. When
selected the generated code will be animated. The generated application will then, after start, communicate
with Rhapsody via a TCP/IP connection. The application can be controlled by the user and the application will
report back information to Rhapsody that can be showed by the user. Sequence diagrams, Statecharts can be
animated and the content of instances can be viewed and changed.
Viewing and changing variables that have user defined types is difficult for Rhapsody since it does not have
information about the exact meaning of the type’s content.
Therefor, functions must be defined that are able to represent the content and to parse a string that contains
the content of a variable. This is called serialize<TypeName> and unserialize<TypeName>. Serialize receives an
argument from the used type and returns a character string (Use malloc if necessary!), unserialize receives a
string and returns a type.

TL5 v1.0 en.pages Page /2 4

A small trick will prevent these functions to be used when Animation is not selected. This is done with the
<<AnimationOnly>> stereotype. It uses a define (OMINSTRUMENTATION) that is set by Rhapsody when
Animation is used.
This stereotype defines a prologue and an epilogue, using properties:
C_CG::Operation::ImplementationProlog: #ifdef OMINSTRUMENTATION
C_CG::Operation::ImplementationEpilog: #endif
This makes sure that the extra functions are only used when animation is switched on.

Integrate your datatypes in Rhapsody
You can tell Rhapsody to use our data types. You can even tell Rhapsody to use _only_ your datatypes. There
are 2 properties that take care of that:

General::Model::CommonTypes

If this property is empty, Rhapsody will use the standard data types in PredefinedTypes(C). Using $ALL will use
all datatypes that are defined in your Rhapsody model. using (qualified!) Package names that contain type
definitions will use only these.
You can use multiple Types Packages, fill them comma separated in the Property. You can also use the
predefined Packages here, just treat them as a normal types package.

General::Model::DefaultType

This will define the default datatype that is filled in by Rhapsody when you create a new attribute or something
else that uses a type. It should be qualified with the Name of the package it is defined in. (e.g. TypesPkg::uint32)

Ditch the standard Types
When the standard Rhapsody Types are no longer needed they can be deleted. Unfortunately, this is impossible,
deleting has no effect. There is a property that prevents Rhapsody from displaying them:

Browser::Settings::ShowPredefinedPackage

When you use the properties that include your own data types and leave out the standard types (and don’t
use the $All directive) then the standard Rhapsody types will disappear. Only the user defined types will appear
in the type selection menu’s.

What about structs and unions?
They should not be used for attributes or variables. If you have the need to use a struct you actually need a
class. But in the embedded world it is always possible that there are reasons to implement structs or unions,
like saving memory space, using bitfields or implementing complex communication protocols. Rhapsody allows
the use of structs and or unions as type in attributes (just select “struct” or “union”) or you can create your
own types that use structs or unions.

What about bitfields?
Bitfields can be used, you need to define them using properties. Define an attribute and set the following
property:
C_CG::Attribute::BitField
to the number of bits you want to use. The attribute must be part of a struct off-course.

TL5 v1.0 en.pages Page /3 4

What about pointers, volatile and const?
Pointers are easy, there is a “Reference” Field in the Type
definition. There is, however, one specific thing to take care
of. Rhapsody generates a pointer for every variable used as
an argument. Even for enumerators although that does not
make much sense.
This can be changed in some properties that control the
code generation behavior of types: IN, INOUT and OUT.
Also the return value can be set.
The properties are: C_CG::Type::In,
C_CG::Type::InOut, C_CG::Type::Out and
C_CG::Type::ReturnType. Use them to define
how Rhapsody generates code for parameters that use user defined
types.
Const is a Field in the attribute features, just tick it and the variable is set
to const.
Volatile is handled by a property:
C_CG::Attribute::IsVolatile
Should be set to TRUE, then a volatile keyword is generated.

That’s it!

TL5 v1.0 en.pages Page /4 4

More releases of the

NEWSLETTER / TECHLETTER
you can find on:

willert.de/Newsletter
willert.de/Techletter

Author:
WALTER VAN DER HEIDEN

Publisher:

WILLERT SOFTWARE TOOLS GMBH

Hannoversche Straße 21
31675 Bückeburg
www.willert.de
info@willert.de
Tel.: +49 5722 9678 - 60

http://www.willert.de

